首页> 外文OA文献 >Universally Elevating the Phase Transition Performance of Compressed Sensing: Non-Isometric Matrices are Not Necessarily Bad Matrices
【2h】

Universally Elevating the Phase Transition Performance of Compressed Sensing: Non-Isometric Matrices are Not Necessarily Bad Matrices

机译:普遍提升压缩机相变性能   传感:非等距矩阵不一定是坏矩阵

摘要

In compressed sensing problems, $\ell_1$ minimization or Basis Pursuit wasknown to have the best provable phase transition performance of recoverablesparsity among polynomial-time algorithms. It is of great theoretical andpractical interest to find alternative polynomial-time algorithms which performbetter than $\ell_1$ minimization. \cite{Icassp reweighted l_1}, \cite{Isitreweighted l_1}, \cite{XuScaingLaw} and \cite{iterativereweightedjournal} haveshown that a two-stage re-weighted $\ell_1$ minimization algorithm can boostthe phase transition performance for signals whose nonzero elements follow anamplitude probability density function (pdf) $f(\cdot)$ whose $t$-th derivative$f^{t}(0) \neq 0$ for some integer $t \geq 0$. However, for signals whosenonzero elements are strictly suspended from zero in distribution (for example,constant-modulus, only taking values `$+d$' or `$-d$' for some nonzero realnumber $d$), no polynomial-time signal recovery algorithms were known toprovide better phase transition performance than plain $\ell_1$ minimization,especially for dense sensing matrices. In this paper, we show that apolynomial-time algorithm can universally elevate the phase-transitionperformance of compressed sensing, compared with $\ell_1$ minimization, evenfor signals with constant-modulus nonzero elements. Contrary to conventionalwisdoms that compressed sensing matrices are desired to be isometric, we showthat non-isometric matrices are not necessarily bad sensing matrices. In thispaper, we also provide a framework for recovering sparse signals when sensingmatrices are not isometric.
机译:在压缩传感问题中,最小化或基本追求在多项式时间算法中具有可恢复稀疏度的最佳可证明相变性能。寻找比$ \ ell_1 $最小化性能更好的替代多项式时间算法具有重大的理论和实践意义。 \ cite {Icassp重加权l_1},\ cite {Isitreweighted l_1},\ cite {XuScaingLaw}和\ cite {iterativereweightedjournal}已经表明,两阶段重新加权的$ \ ell_1 $最小化算法可以提高非零信号的相位转换性能。元素遵循幅度概率密度函数(pdf)$ f(\ cdot)$,对于某些整数$ t \ geq 0 $,其$ t $阶导数$ f ^ {t}(0)\ neq 0 $。但是,对于非零元素在分配中严格从零暂停的信号(例如,常数模,对于某些非零实数$ d $,仅采用值“ $ + d $”或“ $ -d $”),没有多项式时间众所周知,信号恢复算法比普通的\\ ell_1 $最小化可提供更好的相变性能,尤其是对于密集传感矩阵而言。在本文中,我们表明,即使对于具有恒定模量非零元素的信号,与$ \ ell_1 $最小化相比,多项式时间算法也可以普遍提高压缩感测的相变性能。与传统的智慧要求压缩的感测矩阵是等距的相反,我们表明非等距矩阵不一定是不好的感测矩阵。在本文中,我们还提供了一个当感测矩阵不是等轴测时恢复稀疏信号的框架。

著录项

  • 作者

    Xu, Weiyu; Cho, Myung;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号